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Many natural disasters cause not only critical situations for facilities and resident's life, 
but also significant damage to economy.  It is obvious that quick rescue action must be 
undertaken and that there are many problems due to the occurrence of secondary 
disasters at rescue work-site.  For example, many bridges were damaged by a huge 
earthquake in 2011 in Japan’s Tohoku areas, called the Great East Japan Earthquake.  
We need to develop a new rescue structure to survive these disasters.  We have to 
consider how to rebuild damaged infrastructures and how to build a new type of rescue 
system.  Therefore, we suggest a new type of emergency bridge, Mobile bridge(MB).  
In this paper, we discuss the scissors type of bridge in order to evaluate its numerical 
approach including a reinforced strut and characteristics.  Moreover, we analyze the 
design method of calculation model based on theoretical equilibrium theory based on 
origami-folding engineering. 

Keywords: Origami, Mobile bridge, Emergency bridge, Scissors structure, Rescue 
system, Strut reinforce. 

 

  

1 INTRODUCTION 

In recent years, natural disasters such as earthquakes, floods and tsunamis have caused 

widespread social damages.  For example, many bridges were damaged by a huge earthquake in 

2011 in Japan’s Tohoku areas, called The Great East Japan Earthquake.  We need to develop a 

new rescue structure to survive these disasters.  We have to consider how to rebuild damaged 

infrastructures and how to build a new type of rescue system (Ario et al. 2011).  Therefore, we 

suggest a new type of emergency bridge, Mobile Bridge(MB), with a scissors structure as shown 

in Figure 1 (Ario et al. 2011).  This experimental MB can expand and fold main structural frame, 

and its characteristic provides rapid construction on site (Ario 2006).  However, the MB is a 

flexible structure because of consisting many number of hinge connection.  That is, the MB has 

an engineering issue such as wind vibration, earthquake shaking.  Therefore we consider the strut 

reinforcement to raise more performance of the MB.  In this paper, we suggest strut 

reinforcement for the MB after the expanding, and try to build a calculation technique.  From the 

result of numerical simulation, we inspect mechanical property of MB by the reinforcement. 
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Figure 1.  Mobilebridge ver 2.0 at CMI. 

 

2 MECHANICS OF SCISSORS STRUCTURE 

In this section, it is reviewed mechanics of scissors structure.  FBD of a unit scissors structure is 

shown in Figure 2 (Chikahiro et al. 2011).  When the length of the members is L0 and the 

expanding angle of inclination is θ, the sectional length λ and height 2h are L0sinθ=λ and 

L0cosθ=2h.  So, the construction and storage of such a structure can be shown by the angle θ.   

 

 
 

Figure 2.  FBD of scissors structure. 

 

 
 

Figure 3.  Continuity conditions of each member for AE and BD. 

 

This unit scissors structure can be designed by using the equilibrium equations.  The 

equilibrium equations concerning each external force VA, HA and VE, HE are given as two 

expressions, and the equilibrium equation of the moment concerning each nodal point from A to 

D is set up with four expressions, as shown in the following: 

0 EDBA HHHHH                                                       (1) 

   0 EDBA VVVVV                                                        (2)  

0)(2)(  EBEDAat VVhHHM                                              (3) 
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0)(2)(  DAEDBat VVhHHM                                              (4) 

0)(2)(  EBBADat VVhHHM                                              (5) 

0)(2)(  DABAEat VVhHHM                                            (6) 

Looking at the members AE and BD that intersect as shown in Figure.3, it is apparent that the 

equilibrium equations of a couple of moments occur at Point C. 

   2/2/： of 　  EEAAC VhHVhHMAEMember                                 (7) 

    02/)(  EAEA VVhHH  

   2/2/： of 　  BBDDC VhHVhHMDBMember                                (8) 

    02/)(  DBDB VVhHH  

It can be present following matrix by arranging the eight calculated equilibrium equations. 
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However, the pivot is set up from the condition of continuity of the member.  2h = L0cosθ, 

and λ= L0sinθ.  An unknown reaction force can be solved by thinking about the loading condition 

and the boundary condition for the equations of equilibrium. 

 

3 MECHANICS OF A TWO-UNIT SCISSORS STRUCTURE 

A two-unit scissor structure under the cantilever condition, which includes pinned support at 

points B
L

1 and A
L

1 and a load P at point A
R

2, as shown in Figure 4 is considered as an example. 

In this problem, it is possible to treat the external forces as the left and rights sides of internal 

forces operating on the hinges at points B1,2 and A1,2, Hence, these relationships are expressed as,  

{
 
 

 
 (𝐵1.2)𝑥
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                                                   (10) 

{(𝐵1.2), (𝐴1.2)}
𝑇 = {(𝐵1

𝑅), (𝐴1
𝑅)}𝑇 + {(𝐵2

𝐿), (𝐴2
𝐿)}𝑇                                     (11) 
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Figure 4.  Two-unit cantilever model. 

 

The matrix form for each scissor unit in the two-unit scissor problem can be also obtained by 

following a procedure similar to the one described for the unit scissor model.  The equilibrium 

equation for the first unit can be expressed as 

L{(𝐵1
𝐿), (𝐴1

𝐿)}𝑇 = −R{(𝐵1
𝑅), (𝐴1

𝑅)}𝑇 − {(𝐶1, 0)}
𝑇                                    (12) 

Similarly, the equilibrium equation for the second unit can be expressed as 

L{(𝐴2
𝐿), (𝐴2

𝐿)}𝑇 = −R{(𝐴2
𝑅), (𝐴2

𝑅)}𝑇 − {(𝐶2, 0)}
𝑇                                    (13) 

Substituting Eq. (12) and Eq. (13) into Eq. (11) and rearranging them, the matrix form for the 

two-unit scissor problem under the cantilever condition is obtained: 

{(𝐵1), (𝐴1)}
𝑇 = −(𝐿−1R)2{(𝐵2), (𝐴2)}

𝑇 − 𝐿−1R{(𝐵1,2), (𝐴1,2)}
𝑇
− 𝐿−1R𝐿−1{(𝐶2, 0)}

𝑇 − 𝐿−1{(𝐶2, 0)}
𝑇  (14) 

By substituting the initial condition of (A
R

2)y = P and the other nodal forces  = 0 into Eq.  

(14), the unknown reaction forces for the two-unit scissor structure can be expressed as (A
L

1 )x = 

−(B
L

1 )x = −2P tanθ and (A
L

1)y = P, (B
L

1)y = 0.  When the theoretical results for the one-unit and 

two-unit scissor structures are compared, we can see that the vertical reaction forces are the same, 

but the horizontal reaction forces are doubled.  It is clear that the horizontal reaction forces may 

become very large if the number of scissor units is increase.   

 

4 MECHANICS OF A N-UNIT SCISSORS STRUCTURE  

The reaction and section forces for a scissor structure with n units can be calculated in a manner 

similar to that for the two-unit scissor problem.  If the relationship between the sectional stresses 

and the angle θ that acts on each member are considered, we can see that the bending stress that 

depends on the length of each member is also the predominant sectional stress.  From these 

concepts, it is possible to design a scissor structure simply by considering only the predominant 

sectional stress, that is, the bending stress. 

 

5 MECHANICS OF A REINFORCED SCISSORS STRUCTURE 

5.1    Effect of a Vertical Reinforcement 

In this section, the effect of scissors structure with the reinforcement is examined.  Although the 

reinforced scissors structure is statically indeterminate problem, the section forces of scissors 

structure with the reinforcement also can be solved once statically indeterminate force is solved.  

Figure 5 (a) shows the scissors structure with vertical member.  A unit scissor structure under the 
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cantilever condition, which includes pinned support at left side hinges and a load P at upper-right 

hinge is considered.  The section forces of the vertical member have statically indeterminate force 

X.  Statically indeterminate force X is introduced by the unit load method. 

X = −
∑∫

𝑀0𝑀1
𝐸𝐼

𝑑𝑥+∑
𝑁0𝑁1
𝐸𝐴

𝐿

2

∑∫
𝑀1𝑀1
𝐸𝐼

𝑑𝑥+∑
𝑁1𝑁1
𝐸𝐴

𝐿

2
+∑

𝑁1𝑁1
𝐸𝐴

𝐿

2

                                                 (15) 

                                  
(a) Scissors structure with a vertical member          (b) Scissors structure with a upper member 

 

Figure 5.  A unit scissors structure with a reinforcing member. 

 

Here, P = load, E = Young's modulus, A = cross-sectional area of scissors structure,  I = second 

moment of area of scissors structure,  L = length, θ = expanding angle, B = cross-sectional area of 

reinforcement structure, N0 = axis force of statically indeterminate, M0 = bending moment of 

statically indeterminate，N1 = axis force of first system，M1 = bending stress of first system.  

Statically indeterminate force X of vertical member is 

                               𝑋 = −
𝑃

2
+

6𝐶𝑜𝑠𝜃

12𝐶𝑜𝑠𝜃+𝛼(12+𝛽𝐿2+(2−𝛽𝐿2)𝐶𝑜𝑠𝜃)
                                         (16) 

where β=A/I, and we define α parameter of stiffness.  α=EB/EA.  From Eq.  (16), a statically 

indeterminate force X depends on not only the cross-sectional area of scissors structure but also 

the area of reinforcement structure.  Final section forces are obtained by statically indeterminate 

force X and found by using principle of superposition (17) and (18). 

N = N0+N1X                                                                     (17) 

M = M1+M1X                                                                   (18) 

And, there is a change in comparison with the no reinforced pattern.  Bending stress has large 

change.  All bending moment has one member which works load before reinforcement.  

However, two members have same value of bending moment separately after reinforcement. 

 

5.2    Effect of Upper Reinforcement 

An upper reinforced structure is shown in Figure 6(b).  Boundary condition and load condition 

are the same in the previous one.  Statically indeterminate force X is introduced by the unit load 

method. 

X = −
𝛼𝑃(−12𝛾+𝐿2+24𝛾𝑐𝑠𝑐2

𝜃

2
)𝑠𝑖𝑛

𝜃

2

24𝛾𝑐𝑜𝑠𝜃+𝛼𝐿2(1+𝑐𝑜𝑠
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2
)+3𝛼𝛾(7+𝑐𝑜𝑠
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4
)𝑐𝑠𝑐2

𝜃

2

                                       (19) 

where  𝛾 = 𝐼/𝐴.  Using two equations (17) and (18)，and final section forces are solved.  By 

adding the upper reinforcement, the section forces are decreased.  The decrease ratio of the 
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section forces by adding the upper reinforcement is larger than vertical one.  Bending moment of 

work one member is almost disappear and the other member has no bending moment.  It leads to 

support point through a reinforcing structure.  First one member is worked all bending moment, 

parameter α is increased, and suddenly bending stress is decreased and becomes horizontally 

asymptotic. 

 

6 CONCLUSION 

The points which became clear from this research are followed as: 

 We introduce the equation from equilibrium of force and moment. 

 We can expand equilibrium equations as statically indeterminate problem, and lead 

statically indeterminate force and sectional forces based on two analytical examples.   

 The section forces in a scissor structure can be decreased by the strut reinforcement.  

Especially, the upper reinforcement is more effective than the vertical reinforcement.   

 Reinforcing effect does not so increase even if the stiffness ratio between scissor and 

strut member is change.   
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