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Bamboo is a sustainable and eco-friendly material with great potential to replace 
traditionally available construction materials like concrete and steel.  However, 
accurately predicting the behavior of bamboo is essential for improving the structural 
design codes, which will enhance the wider usage of bamboo as a structural member.  In 
this study, the buckling of bamboo is modelled numerically as both cylindrical and 
tapered circular columns with varying elastic moduli across the cross-sections in 
ABAQUSâ.  Then, the results were compared with Euler's equation derived for the 
cylindrical and tapered circular columns having homogeneous cross-sections.  Finally, it 
was observed that columns with varying elastic moduli across the cross-section have 1.5 
to 2.3 times a lesser buckling load capacity than columns with homogeneous cross-
sections with outer Young's modulus value (Eo).  Also, compared to buckling load 
homogeneous cross-sections with inner Young's modulus value (Ei), varying elastic 
modulus cross-sections have 1.7 to 2.7 times higher buckling load.  This study 
emphasizes the necessity of having a simple analytical equation with varying elastic 
modulus for calculating the buckling load for bamboo columns. 
Keywords:  Buckling, Natural FGM, Sustainable construction, Buckling load capacity.  

 

1 INTRODUCTION 

Bamboo, a naturally available structural member, has been used since ancient times for house 
construction due to its sustainability and potential to reduce carbon emissions.  Bamboo is a unique 
unidirectional composite consisting of vascular bundles as reinforcement and parenchyma cells as 
the matrix.  The density of bamboo varies depending on species, growing conditions, and position 
along the culm.  The fibers, which are approximately 60-70 % by weight (Ghavami et al. 2003); 
determine their mechanical properties due to their unidirectional arrangement in the tissue and 
unique cell wall structure.  To increase bamboo adoption in construction, appropriate building 
codes are needed to design the members for compression, tension, and bending forces.  The bamboo 
design under compression is critical, as the member's failure would be buckling rather than material 
failure.  This study focuses on understanding the buckling behavior of bamboo column members 
under pure axial compression and its relation to the microstructure.  The study aims to idealize 
bamboo as a natural functionally graded material with varying Young's modulus from the inner 
face to the outer periphery of the bamboo rather than a homogeneous material (Harries et al. 2017).  
In the current work, the impact of varying elastic moduli on the buckling load of a bamboo column 
with cylindrical and tapered cross-sections was studied by finite element modeling in ABAQUSâ 
software.  Then the results were compared with the Euler buckling equation for the homogeneous 
cross-section.  According to Harries et al. (2017); the modulus of elasticity (E) over the thickness 
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of a bamboo column varies according to the volume percentage of the fibers and is determined by 
Eq. (1): 

 𝐸 = (1 − 𝑉)𝐸! + 𝑉𝐸"  (1) 

where V is the fiber volume percentage, Ef is the elastic modulus of bamboo fibers, and Em is the 
elastic modulus of lignin. 

From above Eq. (1), one can easily observe that as the volume of fiber increases from the inner 
to the outer radius of the bamboo (as shown in Fig. 2) modulus of elasticity also increases from the 
inner to the outer radius of the bamboo.  Also, the diameter varies along the length, as shown in 
Fig. 1, one needs to model the bamboo column as tapered instead of a cylindrical cross-section. 
 

 

 

Fig. 1.  Longitudinal section of Bamboo column. Fig. 2.  Cross section of Bamboo column. 

2 NUMERICAL MODELING 

Three annular cylindrical columns with cylindrical cross-section and three tapered annular 
cylindrical columns with a Do/t diameter to thickness ratio of 20, 10, and 5 are chosen to model the 
bamboo in the ABAQUSâ, where Do is the outer diameter of the column, and t is the thickness of 
the column.  The outer diameter and length of the column were taken as 100 mm and 1000 mm.  
The tapering of 5ο was given to the model tapered column.  Three cases of linear, quadratic, and 
cubic variations of the modulus of elasticity (E) along the thickness of the bamboo were considered 
for cylindrical columns.  Three cases of constant, linear, and cubic variations of the modulus of 
elasticity (E) along the thickness of the bamboo were considered for tapered columns.  For the 
numerical model, based on the variation of the volume fiber, the following expression for the E 
across the thickness was adopted, which is given in Eq. (2): 

 𝐸(𝑟) = (𝐸# − 𝐸$) × +
%&'!
'"&'!

,
(
+ 𝐸$  (2) 

where Ei and Eo is Young’s modulus of the inner and outer layer of the bamboo, Ri and Ro is the 
inner and outer radius of the bamboo.   

The value of Ei and Eo was taken as 5000 MPa and 20,000 MPa, respectively (Dixon and 
Gibson 2014).  Depending on the value of n, the linear or non-linear variation of E along the 
thickness of the bamboo can be modeled.  The geometry was created with four concentric cylinder 
parts, and each part was assigned a constant E value to get an approximate step variation of Young’s 
modulus across the cross-section as compared to continuous variation, as shown in Fig. 3.  Finally, 
all the parts were merged to get a single geometric model (refer to Figs. 4 and 5).  The hinge 
boundary condition has been assigned at the top and bottom using MPC constraint at the centroid 
cross-section.  The reduced integration of 20-node brick elements was used to model the column.  
The appropriate mesh for all the models arrived at after conducting the mesh convergence study 
such that the error between the buckling load corresponding to successive two trail numerical 
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models (by varying coarse mesh to finer mesh) was less than 5% (Cook et al. 2001).  Also, to 
validate the numerical models, the results of the cylindrical circular homogeneous columns were 
compared with the corresponding Euler’s buckling equation, as reported in Tables 1 and 2.  By 
comparing it with analytical results, the error was found to be less than 5%.  The buckling analysis 
was performed, and the results are reported in the tables along with a comparison with the analytical 
equation of Euler buckling load. 

  

a.  Linear variation of modulus of elasticity. b.  Quadratic variation of modulus of elasticity. 

 

c.  Cubic variation of modulus of elasticity. 

Fig. 3.  Comparison of variation of E between analytical expression (Eq. (1)) and numerical modelling. 

3 RESULTS AND DISCUSSION 

Figs. 4 and 5 show the deformed shapes exemplifying the lowest buckling mode revealed through 
the eigenvalue analysis.  The critical eigenvalues derived from this analysis act as pivotal buckling 
load factors.  To ascertain the critical buckling load for the columns, these load factors are applied 
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as multipliers to a nominal load of 1N.  The results from the numerical models are listed in Tables 
1 and 2.  

  

Fig. 4.  Model geometry with the meshing and first buckling mode of an annular cylindrical column. 

  

Fig. 5.  Model geometry with the meshing and first buckling mode of a tapered annular cylindrical column. 

Table 1.  Results of cylindrical column obtained from ABAQUS®. 

 
Do/t Buckling load obtained from numerical analysis (kN) 

Buckling load 
obtained from 

Euler’s 
equation (kN) 
with E as Ei 
Pcr =			

𝝅𝟐𝑬𝒊𝑰
𝑲𝑳𝟐

 

Buckling load 
obtained from 

Euler’s 
equation (kN) 
with E as Eo 
Pcr =			

𝝅𝟐𝑬𝒐𝑰
𝑲𝑳𝟐

 

For constant 
modulus of 
elasticity 
with Ei 

For linear 
variation of 

E 

For quadratic 
variation of E 

For cubic 
variation of 

E 

5 203 574.8 478 411 211 843.4 
10 136 348 297 257 143 572 
20 79 205 165 143.5 83 332 

Table 2.  Results of tapered column obtained from ABAQUS®. 

 
Do/t 

Buckling value obtained from ABAQUS® (kN) Result obtained from 
analytical expression (kN) 

(Gere and Carter 1962) 
with E as Ei 

𝑷𝒄𝒓 =
𝑷∗𝝅𝟐𝑬𝒊𝑰𝑨

𝑳𝟐  

Result obtained from 
analytical expression 

(kN) (Gere and Carter 
1962) with E as Eo 

𝑷𝒄𝒓 =	
𝑷∗𝝅𝟐𝑬𝒐𝑰𝑨

𝑳𝟐  

For constant 
modulus of 

elasticity with 
𝑬𝒊 

For linear 
variation of 
modulus of 
elasticity 

For cubic 
variation of 
modulus of 
elasticity 

5 1110 3076.7 2172 1117 4468 
10 690 1756 1232 685 2740 
20 345 904 629 348 1392 
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The results for the cylindrical column obtained from Abaqus were compared with Euler’s 
equation for a homogeneous cross-section given by Eq. (3): 

 P)% =	
*#+,
-.#

 (3) 

where Pcr critical load of the column is, E is the modulus of elasticity corresponding to the inner or 
outer fiber layer of the bamboo, 𝐼 is modulus of elasticity of column and L is the length of the 
column, K is the effective length factor, and for the pinned-pinned end boundary condition, its value 
is 1.   

The eigenvalue obtained from numerical model results for the tapered column was compared 
with the analytical equation available in the literature (Gere and Carter 1962) as given by Eq. (4): 

 𝑃)% =
/∗*#+!,%

.#
 (4) 

where E is the Modulus of elasticity corresponding to either the inner or outer fiber layer of the 
bamboo, IA is the moment of inertia at the smaller end of the column, L is the length of the column, 
p* is the function of shape factor n, and the ratio of outer diameters at larger and smaller ends, 
respectively. 

From the results that are tabulated in Table 1, it is observed that cylindrical columns with 
varying elastic moduli across the cross-section have 1.5 lesser buckling load for the linear variation 
of elastic modulus and 2.3 times a lesser buckling load capacity for the quadratic variation of elastic 
modulus than the columns with homogeneous cross-sections with outer Young's modulus value 
(Eo).  Also, compared to buckling load homogeneous cross-sections with inner Young's modulus 
value (Ei), varying elastic modulus cross-sections have 1.7 lesser buckling load for the linear 
variation of elastic modulus and 2.7 times higher buckling load for the quadratic and cubic variation 
of elastic modulus.  Similar results are also observed with tapered columns with varying elastic 
moduli across the cross-section.  The reported results also showed that the bucking load of a column 
with a cross-section of a linear variation of E has a higher buckling load than a quadratic and cubic 
variation.  From this, one can easily observe that the Euler buckling formula, originally developed 
for columns with homogeneous cross-sections, cannot be applied to predict the buckling load for a 
bamboo column.  
 
4 CONCLUSIONS 

In this study, a 3D numerical model was developed and analyzed to understand the effect of the 
bamboo cross-section with varying elastic modulus on the column buckling load capacity.  Based 
on the above results, it is evident that accounting for variations in the elastic modulus results in 
either underestimating or overestimating the buckling load for cylindrical columns compared to 
assuming a constant modulus.  Additionally, when considering tapered columns, which may reflect 
the actual geometry of the bamboo, there is an increase in the buckling load compared to that of 
cylindrical columns.  In conclusion, considering variable elastic modulus values and the actual 
tapered shape of columns significantly underestimates or overestimates the buckling loads 
compared to assuming a constant modulus and cylindrical cross-section.  This study prompts the 
development of an analytical equation to accurately predict the buckling load of the bamboo 
columns and, in turn, helps to advance the building design codes.  Advancement of the structural 
design codes will lead to the large-scale adoption of bamboo in buildings by Architects and 
practicing engineers. 
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