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In the United States, the commercial sector consumes 21% of the total energy use.  With 
14%, the ~47,000 hotels are considered to be the third main source of energy 
consumption in the commercial sector.  Stakeholders in the hotel industry have shown 
significant interest in reducing energy consumption in hotel buildings.  However, 
determining the primary factors that contribute to overall energy consumption is 
important to develop efficient and effective retrofitting strategies.  To address this 
question, this study focuses on identifying the variables in hotels that contribute majorly 
to their energy consumption.  To achieve that, this study utilizes different machine 
learning approaches for estimating the source of Energy Use Intensity (EUI) for US hotel 
buildings based on Commercial Building Energy Consumption Survey (CBECS) 2018 
microdata.  The findings derived from this research can significantly contribute to the 
optimization of retrofitting strategies and building design in hotel buildings, as well as 
the development of effective electrification strategies.  Ultimately, this knowledge will 
empower decision makers to make informed choices that enhance energy efficiency and 
sustainability in hotel buildings. 
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1 INTRODUCTION 

Hotel buildings account for 14% of commercial sector's total energy consumption (US DOE 2023).  
Of the ~47,000 hotel buildings in the US (EnergyStar 2022, US DOE 2023), the retrofitting and 
electrification of these hotel buildings is recognized as a desirable approach to substitute traditional 
fossil fuel-based systems with renewable energy sources (Hansen et al. 2019).  While some hotels 
have made satisfactory progress in electrifying their operations, the extent of electrification across 
the entire hotel industry is still not significant.  This transition can help improve energy efficiency 
and lower environmental impacts for hotel buildings. 

Additionally, uncertainties about the primary factors that influence energy consumption in 
hotel buildings have made it more challenging to develop electrification and retrofitting strategies 
for achieving net-zero buildings and for decarbonization.  These uncertainties have added 
complexity to the ongoing efforts in this area (Connolly 2017, Hong et al. 2023).  Therefore, the 
primary objective of this study is to identify the most influential variables for energy consumption 
(i.e., source energy usage) of the hotel buildings.  These findings will subsequently inform the 
development of effective retrofitting and electrification strategies.  Researchers have developed 
statistical methodologies over the past two decades to better predict total energy consumption of 
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buildings using large data sets (Ahmad et al. 2014, Deng et al. 2018) and investigate the 
interrelationships between energy use and the consumption of other resources such as water, gas, 
and even transport (Movahedi and Derrible 2021, Palani et al. 2023).  However, these studies tend 
to look at buildings in aggregate form or to focus on residential or office buildings.  Therefore, this 
study uses the Commercial Building Energy Consumption Survey (CBECS) 2018 microdata (US 
EIA 2023) to measure the energy use intensity (annual energy use of building in kBtu/total floor 
area in square footage) of US hotel buildings.  To achieve this, various machine learning (ML) 
techniques—K-nearest neighbor (KNN), linear regression (LR), support vector machine (SVM), 
random forest (RF), and gradient boosting (GB)—were applied to form generalized models for the 
prediction of source energy usage in hotels.  

The findings are expected to help decision makers such as utility companies in developing their 
electrification strategies to achieve net zero energy buildings and decarbonization goals.  
 
2 METHODOLOGY 

The methodology of this study is divided into three sections: (1) data organization, (2) uncertainty 
analysis, and (3) data analysis. 
 
2.1    Data Organization  

The data organization includes developing the list of categorical and continuous variables.  Data 
was collected from the Commercial Building Energy Consumption Survey (CBECS) 2018 
microdata governed by the US Department of Energy (DOE) and conducted by the US Energy 
Information Administration (EIA).  The CBECS microdata includes the total energy consumption 
for six years (2013-2018) in US commercial buildings.  

The CBECS 2018 microdata reported annual energy consumption of 6,436 buildings in the US, 
representing over five million total commercial buildings in the country.  It has 510 variables.  As 
part of data cleaning process, variables were eliminated that had (1) a significant number of missing 
values (more than 80% per variable), (2) no relevance to standard hotel buildings (e.g., office, 
restaurant), (3) no relation to building energy consumption, (4) little to no variation (<10%), and 
(5) similar or duplicate information.  After completing the cleaning process, the total number of 
input variables was 79 where 57 were categorical and 22 were continuous; see Tables 1 and 2. Out 
of the 6,436 commercial buildings in the CBECS 2018 microdata, 272 were hotels (4.2%).   

To evaluate the energy performance of hotel buildings in the US, the Energy Use Intensity 
(EUI) metric was utilized, which is commonly used for this purpose (Bauer and Scartezzini 1998 
Chung et al. 2006).  EUI is calculated by dividing the annual energy consumption of the hotel 
building (in kilo British thermal unit, or kBtu) by the hotel's total floor area.  Figure 1 shows the 
distribution of the calculated source EUI of the hotel population after incorporating the weights 
available in the survey.  From the distribution we can observe that the EUI ranges from 16 to 265 
kBtu/ft2.  The hotels at the 95th percentile use almost 6 times the energy oat the 5th percentile.  The 
source EUI distribution presents a negative skew, meaning that the most efficient hotels are closer 
to the median than the most energy intensive.  

Table 1.  List of categorical variables for source EUI prediction. 

# Categorical 
Variables 

Variable 
Label 

No. of 
Classes # Categorical Variables Variable 

Label 
No. of 

Classes 
1 Census Region REGION 4 30 Elec. used for cooking ELCOOK 2 

2 Census Division CENDIV 9 31 Energy management plan ENRGYP
LN 2 

3 Wall cons. material WLCNS 9 32 Fast food/small restaurant FASTFD 2 
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4 Roof cons. material RFCNS 9 33 Cafeteria/large restaurant CAF 2 
5 Roof tilt RFTILT 3 34 Ext. overhangs or awnings AWN 2 
6 Building shape BLDSHP 11 35 Conference or event space CONFSP 2 
7 Building owner type OWNTYPE 10 36 Indoor pool POOL 2 

8 Main heating 
equipment MAINHT 8 37 Full-size residential type 

refrigerators/freezers RFGRES 2 

9 Main cooling 
equipment MAINCL 9 38 Half-size/compact 

refrigerators/freezers 
RFGCO

MP 2 

10 How reduce heating 
during 24 h period HWRDHT 5 39 Walk-in 

refrigerators/freezers RFGWI 2 

11 How reduce cooling 
during 24 h period HWRDCL 5 40 Open refrigerator/freezer 

cases or cabinets RFGOP 2 

12 Window glass type WINTYP 4 41 Closed refrigerator/freezer 
cases or cabinets RFGCL 2 

13 Laundry onsite LAUNDR 3 42 Fluorescent lighting FLUOR 2 
14 Cool roof material RFCOOL 2 43 CFL bulbs CFLR 2 
15 Escalators ESCLTR 2 44 Incandescent light bulbs BULB 2 
16 Attic ATTIC 2 45 Halogen bulbs HALO 2 

17 
Owner responsible for 
operat. and maint. of 
energy system 

OWNOCC 2 46 High intensity discharge 
(HID) lighting HID 2 

18 Window replacement RENWIN 2 47 LED lighting LED 2 
19 HVAC equip. upgrade RENHVC 2 48 Light scheduling SCHED 2 
20 Lighting upgrade RENLGT 2 49 Occupancy sensors OCSN 2 

21 Energy for secondary 
heating HT2 2 50 Multi-level lighting/ 

dimming DIM 2 

22 Insulation upgrade RENINS 2 51 Daylight harvesting DAYHA
RV 2 

23 On a multibuilding 
complex FACIL 2 52 Electricity for water 

heating 
ELWAT

R 2 

24 Roof replacement RENRFF 2 53 Tinted window glass TINT 2 
25 Electric upgrade RENELC 2 54 Reflective window glass REFL 2 

26 Building automation 
system (BAS) EMCS 2 55 Large, commercial kitchen 

prep area FDPREP 2 

27 Economizer cycle ECN 2 56 Skylight/atriums designed SKYLT 2 
28 Regular HVAC maint. MAINT 2 57 Electricity for cooling ELCOOL 2 
29 Light parking area PKLT 2     

KNN was first used to impute the missing data in the sample set of 272 hotel buildings from 
the CBECS 2018 dataset.  The KNN value was set to 10 since it worked best.  Five nearest 
neighbors with KNN values of 3, 5, 6, 7, and 10 were considered.  Following this, hot encoding 
(i.e., a process for converting categorical variables to numerical, non-binary ones) was applied on 
all ML techniques with more than 2 classes for better model prediction.  Then, the categorical 
variables with only two classes (yes, no questions) as shown in Table 1 were converted to ‘0’ and 
‘1’ instead of ‘1’ and ‘2’ as we had in the original data.  Finally, the continuous variables (see Table 
2) were normalized to make the training model less sensitive to the scale of variables and prevent 
certain variables from dominating over other to create more accurate model. 

Table 2.  List of continuous variables for source EUI prediction. 

# Continuous Variables Variable 
Label # Continuous Variables Variable 

Label 
1 Number of floors NFLOOR 12 Number of desktop computers PCTERMN 
2 Number of underground floors BASEMNT 13 Number of laptops LAPTPN 
3 Floor to ceiling height FLCEILHT 14 Number of TV or video displays TVVIDEON 
4 Number of elevators NELVTR 15 Percent lit when open LTOHRP 
5 Year of Construction YRCONC 16 Percent lit off hours LTNHRP 
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6 Number of guest rooms LODGRM 17 Percent of exterior lighted LTEXPC 
7 Number of businesses NOCC 18 Percent daylight DAYLTP 
8 Lodging room percent occupancy LODOCCP 19 Percent exterior glass GLSSPC 
9 Number of employees NWKER 20 Heating degree days HDD65 
10 Percent heated HEATP 21 Cooling degree days CDD65 

11 Percent cooled COOLP 22 Annual major fuels consumption 
(thous Btu) MFBTU 

 

Figure 1.  Distribution of source EUI for hotel population. 

2.2    Uncertainty Analysis 

Uncertainty analysis was performed by using cross-validation to evaluate the model performance 
of the proposed regression and ML analytical techniques.  The K-fold method was adopted, where 
the data is divided into K partitions.  The CBECS 2018 microdata was randomly split into three 
portions, with 64% assigned to the training set, 16% to the validation set, and 20% to the testing 
set.  The validation set was considered a part of the training set and used to tune the parameters of 
each proposed model.  Grid search (GridSearchCV) was used for tuning the parameters and 
selecting optimal ones with mean squared error (MSE).  Finally, all the developed models were 
evaluated on the testing set (20%) to compare their generalization capabilities.  To evaluate each 
model’s performance, mean absolute error (MAE) and root mean squared error (RMSE) were used 
to measure the deviation between actual and predicted energy usage in US hotel buildings.  
 
2.3    Data Analysis 

Table 3 shows the MAE and the RMSE for each of the applied prediction models.  Normally, the 
errors in the training set and validation set are indicating the goodness-of-fit of the developed 
models while the errors in the testing set indicate the willingness of the developed model to 
generalize to new and unseen data (Deng et al. 2018).  The results show that overall GB has the 
best performance when taking into account both error metrics and all three datasets.  For this reason, 
from this point all the presented results use this model to interpret the data.  

Table 3.  Comparison of MAE and RMSE among different sets for total source EUI prediction. 

Error on 
source EUI 

MAE RMSE 
Training Validation Testing  Training Set Validation Set Testing Set 

LR 8.58 N/A 52.22 11.69 N/A 66.99 
SVM 23.46 ± 1.00 28.88 ± 3.56 33.12 35.69 ± 1.076 38.32 ± 5.78 42.17 
RF 23.27 ± 0.95 28.79 ± 2.43 31.48 29.12 ± 0.96 37.82 ± 4.65 40.61 
GB 21.72 ± 0.62 28.00 ± 2.80 31.78 28.7 ± 0.92 36.82 ± 4.62 38.56 
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3 RESULTS AND DISCUSSION 

Using GB, the 20 most important features were obtained (see Figure 2).  The important variables 
are the percent of the building lit when open (i.e., LTOHRP), followed by the existence of a 
cafeteria or large restaurant (i.e., CAF), the window glass type (i.e., WINTYP), the percent of 
daylight (i.e., DAYLTP), and the percentage building heated to at least 50 degrees Fahrenheit (i.e., 
HEATP).  Remarkably, the variables of number of guest rooms (i.e., LODGRM) and number of 
floors (i.e., NFLOOR) were found to be relatively less important than the others.  Even though they 
rank within the top 20 out of the 79 variables considered, their relative lower significance suggests 
that they do not exert a substantial influence on the source EUI in hotels.  Further, the importance 
of each variable was also investigated based on the distribution of the observations using SHapley 
Additive exPlanations (SHAP).  In Figure 3, the features that are at the top are the ones that impact 
the model’s output the most.  On the plot, each observation is presented for each feature as a single 
point that is positioned on the horizontal axis according to its influence on the output EUI value.    
In addition, the piling up of the points are meant to represent the density of observations in a 
distribution of values of the corresponding feature.  Figure 3 indicates that the lower the percentage 
of buildings lit when open (i.e., LTOHRP), the more likely the building is to be more energy 
efficient.  In addition, the existence of a cafeteria or large restaurant (i.e., CAF) has a significant 
impact on the likelihood of a hotel being less energy efficient, but the absence of it has a low impact 
in making it more efficient.  One additional thing worth noticing is the presence of hot encoded 
features.  BLDSHP_2, HWRHDT_2, and RFCNS_3, which determine whether a building has a 
wide rectangle shape, whether the temperature is set manually, and whether it has wooden roof, 
respectively.  According to Figure 3, having a wide rectangle shape and setting the temperature 
manually to reduce heating make a hotel more likely to be more energy efficient, while having a 
wooden roof makes it less likely to be efficient.  In conclusion, building efficiency relates more to 
design and control choices such as the additional facilities added to the hotel (e.g., restaurants, 
cafeteria), window glass types, temperature adjustment mechanisms, and lighting and daylight 
allowance.  The MAE and RMSE errors for the testing set of the LR model are higher than other 
models, indicating that the data is not linear, which aligns with the findings from Deng et al. (2018) 
that applied ML techniques to CBECS 2012 microdata for office buildings.  Furthermore, the 
accuracy (R2) of the used ML techniques (LR, SVM, RF, GB) was <10%, making it unsuitable for 
comparing model performance given the data's complexity.  Instead, the MAE and RMSE were 
used as metrics for estimating model performance. 

4 CONCLUSION 

The retrofitting and electrification of hotel buildings in the US is recognized as a beneficial strategy 
to replace fossil fuel with renewable energy sources.  This transition offers advantages in terms of 
energy efficiency and environmental impact for the hotel industry.  Hence, the main aim of this 
study was to determine the key factors that have the greatest impact on source EUI in hotels.  The 
study utilized the CBECS 2018 microdata to assess the source EUI of the US hotel buildings.  To 
do that, several ML techniques were used.  The CBECS microdata was selected since it represents 
over 47,000 hotels in the US.  The outcome of this study can provide valuable insights to decision-
makers (e.g., utility companies) in formulating effective electrification strategies that align with the 
goals of achieving net zero energy buildings and decarbonization.  These findings are anticipated 
to inform and support the development of strategies aimed at reducing energy consumption and 
advancing sustainability in the hotel industry. 
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Figure 2.  Source EUI feature importance under the GB 
model. 

Figure 3.  SHAP summary plot obtained 
from GB model for source EUI. 
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