COVID-19 Linear Regression for daily new cases per country
Regression equation in excel date code:

\[y = -101.55x + 4,465,727.03 \]

Daily declining rate = 101 cases per day

When \(y = 0 \), \(x = \) May 25, 2020

Average wave Period: 6 Days

Average declining rate based on recorded results = 106 cases per day
Regression equation in excel date code:

\[y = -103.81x + 4,567,253.13 \]

Daily declining rate: 104 cases per day

When \(y = 0 \), \(x = \) June 15, 2020

Average wave period: 7 days

Average declining rate based on recorded results: 88 cases per day
Regression equation in excel date code:
\[y = -161.40x + 7,095,529.06 \]

Daily declining rate = 161 cases per day

When \(y = 0 \), \(x = \) May 12, 2020

Average wave period: 7 days

Average declining rate based on recorded results = 144 cases per day
Regression equation in excel date code:
\[y = -33.65x + 1,479,032.83 \]

Daily declining rate= 34 cases per day

When \(y = 0 \), \(x = May 3, 2020 \)

Average wave period: 6 days

Average declining rate based on recorded results= 88 cases per day
Regression Line for Peak Periods: France

Regression line equation:
\[y = -4423 \ln(x) + 16775 \]

Average daily declining rate: 553 cases per day

When \(y = 0 \), \(x = 44 \) (May 16, 2020)

Average declining rate based on recorded results: 649 cases per day

Average wave period: 4 days
Regression Line of Peak Periods: Cyprus

Regression equation in excel date code:
\[y = -2.2197x + 97553 \]

Daily Declining rate = 2 cases per day

When \(y = 0 \), \(x = \) April 28, 2020

Average wave period: 7 days

Average declining rate of recorded results = 2 cases per day