COVID-19 Linear Regression for daily new cases per country
Regression equation in excel date code:

\[y = -101.55x + 4,465,727.03 \]

Daily declining rate: 101 cases per day

When \(y = 0 \), \(x = \text{May 25, 2020} \)

Average wave Period: 6 Days

Average declining rate based on recorded results: 106 cases per day
Regression equation in excel date code:

\[y = -85.35x + 3,756,498.22 \]

When \(y = 0 \), \(x \approx \) July 1, 2020

Daily declining rate = 85 cases per day

Average declining rate of recorded results = 124 cases per day

Average wave period: 7 days
Regression equation in excel date code:

\[y = -175.96x + 7,735,190.74 \]

Daily declining rate = 176 cases per day

When \(y = 0 \), \(x = \) May 9, 2020

Average declining rate of recorded results = 155 cases per day

Average wave period: 7 days
Regression Line for Peak Periods: Switzerland

Regression equation in excel date code:

\[y = -33.65x + 1,479,032.83 \]

Daily declining rate = 34 cases per day

When \(y = 0 \), \(x = \) May 3, 2020

Average wave period: 6 days

Average declining rate based on recorded results = 88 cases per day
Regression Line for Peak Periods: France

Regression line equation:
\[y = -4380\ln(x) + 16722 \]

Average daily declining rate: 322 cases per day

When \(y = 0 \), \(x = 46 \) (May 18, 2020)

Average declining rate based on recorded results: 556 cases per day

Average wave period: 4 days
Regression Line of Peak Periods: Cyprus

Regression equation in excel date code:

\[y = -1.7008x + 74758 \]

Daily Declining rate = 2 cases per day

When \(y = 0 \), \(x = \text{May 3, 2020} \)

Average wave period: 7 days

Average declining rate of recorded results = 2 cases per day

Cyprus