COVID-19 Linear Regression for daily new cases per country
Italy

Linear Regression of Peak Periods: Italy

Regression equation in excel date code:

\[y = -104.17x + 4,580,801.04 \]

Daily declining rate = 104 cases per day

When \(y = 0 \), \(x \approx \text{May 24, 2020} \)

Average wave Period: 7 Days

Average declining rate of recorded results = 91 cases per day
Spain

Regression equation in excel date code:

\[y = -107.42x + 4,725,795.44 \]

Daily declining rate: 107 cases per day

When \(y = 0 \), \(x = June 12, 2020 \)

Average declining rate of recorded results: 102 cases per day

Average wave period: 7 days

Daily New Cases

Date

Regression equation in excel date code:

\[y = -107.42x + 4,725,795.44 \]

Daily declining rate: 107 cases per day

When \(y = 0 \), \(x = June 12, 2020 \)

Average declining rate of recorded results: 102 cases per day

Average wave period: 7 days
France

Regression Line for Peak Periods: France

Regression line equation:
\[y = -4055\ln(x) + 16265 \]

Average daily declining rate: 338 cases per day

When \(y = 0 \), \(x = 55 \) (May 27, 2020)

Average declining rate based on recorded results = 458 cases per day

Average wave period: 5 days
Regression Line of Peak Periods: Cyprus

Regression equation in Excel date code:

\[y = -1.2948x + 56918 \]

Daily Declining rate = 1 case per day

When \(y = 0 \), \(x = \) May 8, 2020

Average wave period: 6 days

Average declining rate of recorded results = 1 case per day

Cyprus
Regression equation in excel date code:

\[y = -95.25x + 4,191,638.25 \]

Daily declining rate = 95 cases per day

When \(y = 0 \), \(x = \) June 25, 2020

Average wave period = 4 days

Average declining rate of recorded results = 12 case per day